
Portability problem with libc

Tom Favereau

March 10, 2025

Abstract

This paper addresses a portability issue in the NaW software, observed
between Debian 10 and Ubuntu 22.04. Discrepancies arise due to floating-
point precision differences, affecting results at the 17th decimal place.
While such precision is unrealistic in physical simulations, it raises con-
cerns about the robustness of the code. We explore potential causes,
including compiler optimizations and library dependencies, and propose
solutions.

Contents

1 Introduction 1

2 Problem Overview 2

3 Testing Protocol 2

4 Problem Investigation 3

5 Proposed Solutions 5

6 Criticism 6

7 Conclusion 6

1 Introduction

This work originates from observations made during the use of a software tool de-
signed to model the sodium-water reaction, which we will refer to as NaW. During
the simulations, portability issues were identified between different Linux dis-
tributions, leading to discrepancies in the results. This specific issue, initially
encountered in the context of the NaW software, has revealed a more general
phenomenon regarding the portability of scientific software across different sys-
tems.

1

In the development and use of scientific software, a recurring issue is portabil-
ity, which refers to the ability of software to produce consistent and reproducible
results across different platforms. In particular, differences between operating
systems, library versions, or compilation options can have a significant impact
on the accuracy and stability of results. This work examines the case of NaW

as a starting point, but extends the analysis to discuss the broader implications
for software portability in computational environments.

This document explores the possible causes of these discrepancies, discusses
the proposed solutions to address the problem, and presents a general approach
to improve software portability in complex computational environments.

2 Problem Overview

A software tool is facing portability issues across different Linux distributions,
leading to discrepancies in results depending on the system used. For instance,
variations were observed between two different versions of operating systems,
which became a priority issue due to a system migration. Moreover, the re-
sults obtained on one of the platforms appeared more consistent, particularly
regarding the shock wave amplitude.

These discrepancies were identified by examining sensor readings generated
by the software. The calculated pressures sometimes differed by a factor of 10. A
line-by-line comparison of the output files revealed that the results were identical
up to a certain iteration, after which discrepancies appeared, often in the last
decimal places. The divergence then grew, likely due to a butterfly effect. It was
noted that the iteration at which results began to diverge varied based on test
parameters, initial conditions, meshing, and compilation options. Interestingly,
compilation optimization seemed to delay the onset of this divergence.

Remark. The comparison of output files was performed using the xxdiff tool.
This tool encounters problems when processing large files. However, typically,
only the end of these files is of interest. Therefore, they should be shortened
using the tail command.

The existence of a limiting iteration leads us to consider two hypotheses:

1. A problem occurs during initialization and propagates progressively through
the mesh.

2. A calculation is sensitive to the values of variables, leading to different
results depending on whether Ubuntu or Debian is used.

The fact that the limiting iteration differs for sensors 1 and 2 leads us to
favor hypothesis 1, where the problem propagates gradually through the mesh.

3 Testing Protocol

To eliminate potential issues related to different optimizations and the use of
the MPI library, the tests will be performed with the -O0 optimization level and

2

on a single processor. The exact compilation options are as follows:

−cpp −msse −msse2 −O0 − f i n i t −l o c a l−zero −DPARALLEL=0
−DPETSC LIB=0 −DCANTERA LIB=0 −DPREC=1 −DCOMPIL=1

Additionally, to avoid problems related to compiler versions, the tests will
be carried out with gfortran version 12.4.1. To prevent any potential issues
caused by the default compilation options of gfortran, it has been manually
compiled using the following command:

. . / gcc −12.4.0/ con f i gu r e −−p r e f i x=/home/ t f279988 /gcc −12.4.1
−−enable−l anguages=c , c++, f o r t r an −−d i sab l e−mu l t i l i b
−−with−gmp=/home/ t f279988 /gcc− l i b s
−−with−mpfr=/home/ t f279988 /gcc− l i b s
−−with−mpc=/home/ t f279988 /gcc− l i b s

4 Problem Investigation

An initial analysis highlighted a behavioral difference between Ubuntu and De-
bian. This difference was localized in the Overbee function1. Specifically, the
call Overbee(0.0 DP) returns 0.0 DP on Debian and -0.0 DP on Ubuntu. Un-
fortunately, we were unable to reproduce this issue outside the context of NaW.

This function is only called when the second-order spatial scheme is enabled.
We decided to perform comparisons using the first-order scheme in both time
and space to simplify the analysis. Therefore, all subsequent tests will be carried
out with the first-order scheme in time (Euler method) and space.

A second analysis, using these modified tests on a 6×6 mesh, was performed
on the advection and fallingDrop test cases. The results were identical on both
Ubuntu and Debian. Therefore, we decided to focus our tests on the Vipere

test case (geometry and physical conditions for which NaW was developed), which
involves chemical processes that we suspect may be responsible for the observed
behavioral differences.

Finally, a last analysis revealed a calculation with different behavior on
Ubuntu and Debian. This observation confirms hypothesis 2, which suggests
that there are computational differences depending on the operating system.

The calculation in question occurs within the TSAT WAT function2. This
function is called by RELAX POT CHIMIQUE3.

We successfully isolated the problem, and it is reproducible. To aid in under-
standing and reproducing this anomaly, we present below a code excerpt that
allows for the reproduction of this behavior.

Remark. The code is presented here in C, as this language is more commonly
used than Fortran. However, the Fortran translation produces the same results.

1code/GRADIENTS/include/GRADIENTS FUNCTION Overbee.inc.f90
2code/models/modelNa/EOS/include/EOS FUNCTION TSAT WAT.inc.f90
3code/models/modelNa/sourceM/include/SourceM SUBROUTINE RELAX POT CHIMIQUE RSE.inc.f90

3

1 #include <stdio.h>

2 #include <math.h>

3

4 #define DP double

5

6 DP f(DP p);

7

8 int main() {

9 DP a = 0.26181692836891457;

10 DP b = 100003.33299724340;

11 DP c;

12

13 c = f(a * b);

14

15 printf("%.15lf\n", c);

16 printf("%.15lf\n", 4900.0 / (12.98 - log((a * b) / 1.0e5)));

17

18 return 0;

19 }

20

21 DP f(DP p) {

22 DP res;

23

24 res = 4900.0 / (12.98 - log(p / 1.0e5));

25

26 return res;

27 }

28

Figure 1: C++ code to reproduce the portability issue

4

Remark. To reproduce this behavioral difference, you can use either a physical
machine, a virtual machine, or even a Docker container (note that this will
not work in a lighter Singularity container). To compile the code, use the
command: g++ file.c with GCC 12.4.0. We also recommend compiling with
g++ -S file.c to examine the generated assembly code.

The analysis of this issue led us to the following conclusions:

• Inlining the function call (line 16) resolves the issue in this case. However,
for values a = 0.13893061007554738 and b = 107672.72827138640, the
problem reappears.

• Compiling with -O1 resolves the issue in this case, but other values for
which the problem persists have been identified, although we did not
record them.

• This behavioral difference is not directly related to Ubuntu and Debian,
as the problem also occurs between Debian 10 and Debian 12.

• We suspect that the glibc library is responsible for the issue. Indeed, it
is version 2.28 on Debian 10 and 2.35 on Ubuntu 22.04. However, nothing
has allowed us to confirm this. Additionally, Alpine 3.20, which uses muslc
1.2.4, behaves like Ubuntu, despite not using libc.

5 Proposed Solutions

Using Docker: The first solution we propose is to use Docker to containerize
NaW. Indeed, using a container will allow us to maintain the software in a version
that works without worrying about future updates. However, using Docker re-
quires sudo privileges. Therefore, we recommend installing Docker and granting
sudo access only for the docker start command and the command to run the
container in interactive mode. Providing full Docker access is neither justified
nor recommended, as it could lead to security issues.

Static Compilation on a Debian Machine: Since the issue is related to
dynamic libraries, one solution is to compile the software statically on Debian
10. The generated binaries will then be statically linked to the correct libraries.
However, this solution has the disadvantage of requiring a different machine
for compilation, meaning that Debian 10 must be kept. Additionally, a static
version of Open MPI will need to be installed on this Debian machine.

Separation of Logarithms: It seems that using the logarithmic property
log(a*b) = log(a) + log(b) can correct the behavioral difference in all the
cases studied so far. Therefore, it is possible that modifying this throughout the
code could resolve the issue. This work has already been partially attempted,

5

but it seems insufficient for the TSAT NA function4. While the solution is not
fully refined, it might still be worth continuing to explore this direction.

6 Criticism

It seems, however, that a difference appearing at the 17th decimal place should
not have a significant impact on the overall results of the code. Indeed, in the
context of simulating physical or chemical reactions, it is unrealistic to know the
initial state with a precision of 17 decimal places. This extreme precision far
exceeds the reliability of experimental data or the available initial conditions.
Therefore, if the software’s results depend on such minute variations, it calls
into question their robustness and relevance.

The dispersive nature observed in the results of the code could indicate an
instability in the numerical method used for the solution. Such an instability
might amplify small errors or disturbances, leading to significant deviations in
the predictions. This potential issue is a priority for investigation, as it could
affect the validity of simulations, particularly for complex scenarios or over long
time scales.

7 Conclusion

In this work, we addressed a portability issue in the NaW software, highlighting
the discrepancies between Debian 10 and Ubuntu 22.04 due to floating-point
precision. Although these differences appear minor, they raise important con-
cerns about the robustness and stability of numerical methods used in the soft-
ware. We proposed several solutions, such as Docker containerization and static
compilation, to mitigate the problem.

However, open questions remain regarding the root cause of these discrepan-
cies. What exactly is causing the behavior observed at the 17th decimal place?
Is it related solely to the precision of floating-point calculations, or does it
reflect deeper issues in the software’s numerical methods or compiler optimiza-
tions? Further investigation is needed to fully understand and address these
challenges, particularly in the context of complex simulations and long-term
predictions.

4./src/code/models/modelNa/EOS/include/EOS FUNCTION TSAT NA.inc.f90

6

	Introduction
	Problem Overview
	Testing Protocol
	Problem Investigation
	Proposed Solutions
	Criticism
	Conclusion

